Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans.
نویسندگان
چکیده
Recent interest has focused on the potential role of amylin in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM). This 37-amino acid peptide is found in extracellular amyloid deposits in approximately 50% of pancreatic islets of patients with NIDDM and has been shown to inhibit skeletal muscle glycogen synthesis in vitro. Immunocytochemical studies have colocalized amylin and insulin within beta-cell secretory granules in nondiabetic humans, provoking the following questions. Is amylin cosecreted with insulin? Are circulating amylin concentrations higher in patients with NIDDM either before or after food ingestion? To answer these questions, we developed a sensitive and specific immunoassay to measure plasma concentrations of amylin in humans. Use of this assay indicated that, in lean nondiabetic subjects, glucose ingestion resulted in an increase (P less than 0.001) in the plasma concentration of amylin (from 2.03 +/- 0.22 to 3.78 +/- 0.39 pM) and insulin (from 48.3 +/- 3.1 to 265 +/- 44 pM). There was a significant correlation between the concentrations of insulin and amylin (r = 0.74, P less than 0.001) and the increase in insulin and amylin concentration (r = 0.65, P less than 0.005). Fasting concentrations of amylin did not differ in diabetic and weight-matched nondiabetic subjects and showed a similar pattern of change after ingestion of a mixed meal. We conclude that amylin is secreted in response to ingestion of either glucose or a mixed meal and circulates at concentrations that do not differ in patients with NIDDM and nondiabetic subjects. It remains to be determined whether amylin at physiological concentrations influences carbohydrate metabolism and if so whether its effects differ in diabetic and nondiabetic humans.
منابع مشابه
Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatic tissues.
Patients with noninsulin-dependent diabetes mellitus (NIDDM) have both preprandial and postprandial hyperglycemia. To determine the mechanism responsible for the postprandial hyperglycemia, insulin secretion, insulin action, and the pattern of carbohydrate metabolism after glucose ingestion were assessed in patients with NIDDM and in matched nondiabetic subjects using the dual isotope and forea...
متن کاملAcute effects of thermally processed pili (Canarium ovatum, Engl.) pomace drink on plasma antioxidant and polyphenol status in humans
Objective: Pili (Canarium ovatum, Engl.) pomace is an underutilized agricultural waste that possesses great potential to be regarded as a functional food ingredient. The aim of this study was to measure the polyphenol content and antioxidant activity of pili pomace drink and determine the influence of heating on these parameters. Moreover, it sought to assess the acute effects of thermally proc...
متن کاملAssessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans.
Insulin concentrations in humans continuously change and typically increase only when glucose also increases such as with eating. In this setting, it is not known whether the severity of hepatic and extrahepatic insulin resistance is comparable and whether the ability of glucose to regulate its own uptake and release is defective in non-insulin-dependent diabetes mellitus (NIDDM). To address th...
متن کاملAmylin reduces plasma glucagon concentration in cats.
Pancreatic amylin plays an important role in the control of nutrient fluxes and is an established therapy in human diabetes as it reduces post-prandial glucagon secretion and slows gastric emptying. Given the similar pathophysiology of human type-2 and feline diabetes mellitus, we investigated whether amylin reduces plasma glucagon levels in cats. Healthy cats were tested using an intravenous a...
متن کاملThe role of amylin in the control of energy homeostasis.
Amylin is an important player in the control of nutrient fluxes. Amylin reduces eating via a meal size effect by promoting meal-ending satiation. This effect seems to depend on a direct action in the area postrema (AP), which is an area rich in amylin receptors. Subsequent to the activation of AP neurons, the neural signal is conveyed to the forebrain via relays involving the nucleus of the sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 39 6 شماره
صفحات -
تاریخ انتشار 1990